• <nav id="zaw9e"></nav>

  • 亚洲app_AV俺去_谁有av网站在线观看_九九精品黄色

    歡迎來到優(yōu)發(fā)表網(wǎng)

    購物車(0)

    期刊大全 雜志訂閱 SCI期刊 期刊投稿 出版社 精品范文

    高中數(shù)學(xué)重點(diǎn)知識(shí)范文

    時(shí)間:2023-07-07 16:10:44

    序論:在您撰寫高中數(shù)學(xué)重點(diǎn)知識(shí)時(shí),參考他人的優(yōu)秀作品可以開闊視野,小編為您整理的7篇范文,希望這些建議能夠激發(fā)您的創(chuàng)作熱情,引導(dǎo)您走向新的創(chuàng)作高度。

    高中數(shù)學(xué)重點(diǎn)知識(shí)

    第1篇

    一般的,在一個(gè)變化過程中,假設(shè)有兩個(gè)變量x、y,如果對(duì)于任意一個(gè)x都有唯一確定的一個(gè)y和它對(duì)應(yīng),那么就稱y是x的函數(shù),其中x是自變量,y是因變量,x的取值范圍叫做這個(gè)函數(shù)的定義域,相應(yīng)y的取值范圍叫做函數(shù)的值域。下面小編給大家分享一些高中數(shù)學(xué)函數(shù)知識(shí)點(diǎn),希望能夠幫助大家,歡迎閱讀!

    高中數(shù)學(xué)函數(shù)知識(shí)一、一次函數(shù)定義與定義式:

    自變量x和因變量y有如下關(guān)系:

    y=kx+b

    則此時(shí)稱y是x的一次函數(shù)。

    特別地,當(dāng)b=0時(shí),y是x的正比例函數(shù)。

    即:y=kx(k為常數(shù),k≠0)

    二、一次函數(shù)的性質(zhì):

    1.y的變化值與對(duì)應(yīng)的x的變化值成正比例,比值為k

    即:y=kx+b(k為任意不為零的實(shí)數(shù)b取任何實(shí)數(shù))

    2.當(dāng)x=0時(shí),b為函數(shù)在y軸上的截距。

    三、一次函數(shù)的圖像及性質(zhì):

    1.作法與圖形:通過如下3個(gè)步驟

    (1)列表;

    (2)描點(diǎn);

    (3)連線,可以作出一次函數(shù)的圖像——一條直線。因此,作一次函數(shù)的圖像只需知道2點(diǎn),并連成直線即可。(通常找函數(shù)圖像與x軸和y軸的交點(diǎn))

    2.性質(zhì):(1)在一次函數(shù)上的任意一點(diǎn)P(x,y),都滿足等式:y=kx+b。

    (2)一次函數(shù)與y軸交點(diǎn)的坐標(biāo)總是(0,b),與x軸總是交于(-b/k,0)正比例函數(shù)的圖像總是過原點(diǎn)。

    3.k,b與函數(shù)圖像所在象限:

    當(dāng)k>0時(shí),直線必通過一、三象限,y隨x的增大而增大;

    當(dāng)k

    當(dāng)b>0時(shí),直線必通過一、二象限;

    當(dāng)b=0時(shí),直線通過原點(diǎn)

    當(dāng)b

    特別地,當(dāng)b=O時(shí),直線通過原點(diǎn)O(0,0)表示的是正比例函數(shù)的圖像。

    這時(shí),當(dāng)k>0時(shí),直線只通過一、三象限;當(dāng)k

    四、確定一次函數(shù)的表達(dá)式:

    已知點(diǎn)A(x1,y1);B(x2,y2),請(qǐng)確定過點(diǎn)A、B的一次函數(shù)的表達(dá)式。

    (1)設(shè)一次函數(shù)的表達(dá)式(也叫解析式)為y=kx+b。

    (2)因?yàn)樵谝淮魏瘮?shù)上的任意一點(diǎn)P(x,y),都滿足等式y(tǒng)=kx+b。所以可以列出2個(gè)方程:y1=kx1+b……①和y2=kx2+b……②

    (3)解這個(gè)二元一次方程,得到k,b的值。

    (4)最后得到一次函數(shù)的表達(dá)式。

    五、一次函數(shù)在生活中的應(yīng)用:

    1.當(dāng)時(shí)間t一定,距離s是速度v的一次函數(shù)。

    s=vt。

    2.當(dāng)水池抽水速度f一定,水池中水量g是抽水時(shí)間t的一次函數(shù)。

    設(shè)水池中原有水量S。g=S-ft。

    六、常用公式:

    1.求函數(shù)圖像的k值:(y1-y2)/(x1-x2)

    2.求與x軸平行線段的中點(diǎn):|x1-x2|/2

    3.求與y軸平行線段的中點(diǎn):|y1-y2|/2

    4.求任意線段的長(zhǎng):√(x1-x2)’2+(y1-y2)’2(注:根號(hào)下(x1-x2)與(y1-y2)的平方和)

    高中數(shù)學(xué)函數(shù)知識(shí)2二次函數(shù)

    I.定義與定義表達(dá)式

    一般地,自變量x和因變量y之間存在如下關(guān)系:

    y=ax’2+bx+c

    (a,b,c為常數(shù),a≠0,且a決定函數(shù)的開口方向,a>0時(shí),開口方向向上,a

    則稱y為x的二次函數(shù)。

    二次函數(shù)表達(dá)式的右邊通常為二次三項(xiàng)式。

    II.二次函數(shù)的三種表達(dá)式

    一般式:y=ax’2+bx+c(a,b,c為常數(shù),a≠0)

    頂點(diǎn)式:y=a(x-h)’2+k[拋物線的頂點(diǎn)P(h,k)]

    交點(diǎn)式:y=a(x-x?)(x-x?)[僅限于與x軸有交點(diǎn)A(x?,0)和B(x?,0)的拋物線]

    注:在3種形式的互相轉(zhuǎn)化中,有如下關(guān)系:

    h=-b/2ak=(4ac-b’2)/4ax?,x?=(-b±√b’2-4ac)/2a

    III.二次函數(shù)的圖像

    在平面直角坐標(biāo)系中作出二次函數(shù)y=x’2的圖像,

    可以看出,二次函數(shù)的圖像是一條拋物線。

    IV.拋物線的性質(zhì)

    1.拋物線是軸對(duì)稱圖形。

    對(duì)稱軸為直線

    x=-b/2a。

    對(duì)稱軸與拋物線唯一的交點(diǎn)為拋物線的頂點(diǎn)P。

    特別地,當(dāng)b=0時(shí),拋物線的對(duì)稱軸是y軸(即直線x=0)

    2.拋物線有一個(gè)頂點(diǎn)P,坐標(biāo)為

    P(-b/2a,(4ac-b’2)/4a)

    當(dāng)-b/2a=0時(shí),P在y軸上;當(dāng)Δ=b’2-4ac=0時(shí),P在x軸上。

    3.二次項(xiàng)系數(shù)a決定拋物線的開口方向和大小。

    當(dāng)a>0時(shí),拋物線向上開口;當(dāng)a

    |a|越大,則拋物線的開口越小。

    4.一次項(xiàng)系數(shù)b和二次項(xiàng)系數(shù)a共同決定對(duì)稱軸的位置。

    當(dāng)a與b同號(hào)時(shí)(即ab>0),對(duì)稱軸在y軸左;

    當(dāng)a與b異號(hào)時(shí)(即ab

    5.常數(shù)項(xiàng)c決定拋物線與y軸交點(diǎn)。

    拋物線與y軸交于(0,c)

    6.拋物線與x軸交點(diǎn)個(gè)數(shù)

    Δ=b’2-4ac>0時(shí),拋物線與x軸有2個(gè)交點(diǎn)。

    Δ=b’2-4ac=0時(shí),拋物線與x軸有1個(gè)交點(diǎn)。

    Δ=b’2-4ac

    V.二次函數(shù)與一元二次方程

    特別地,二次函數(shù)(以下稱函數(shù))y=ax’2+bx+c,

    當(dāng)y=0時(shí),二次函數(shù)為關(guān)于x的一元二次方程(以下稱方程),

    即ax’2+bx+c=0

    此時(shí),函數(shù)圖像與x軸有無交點(diǎn)即方程有無實(shí)數(shù)根。

    函數(shù)與x軸交點(diǎn)的橫坐標(biāo)即為方程的根。

    高中數(shù)學(xué)函數(shù)知識(shí)3反比例函數(shù)

    形如y=k/x(k為常數(shù)且k≠0)的函數(shù),叫做反比例函數(shù)。

    自變量x的取值范圍是不等于0的一切實(shí)數(shù)。

    反比例函數(shù)圖像性質(zhì):

    反比例函數(shù)的圖像為雙曲線。

    由于反比例函數(shù)屬于奇函數(shù),有f(-x)=-f(x),圖像關(guān)于原點(diǎn)對(duì)稱。

    另外,從反比例函數(shù)的解析式可以得出,在反比例函數(shù)的圖像上任取一點(diǎn),向兩個(gè)坐標(biāo)軸作垂線,這點(diǎn)、兩個(gè)垂足及原點(diǎn)所圍成的矩形面積是定值,為∣k∣。

    如圖,上面給出了k分別為正和負(fù)(2和-2)時(shí)的函數(shù)圖像。

    當(dāng)K>0時(shí),反比例函數(shù)圖像經(jīng)過一,三象限,是減函數(shù)

    當(dāng)K

    反比例函數(shù)圖像只能無限趨向于坐標(biāo)軸,無法和坐標(biāo)軸相交。

    知識(shí)點(diǎn):

    1.過反比例函數(shù)圖象上任意一點(diǎn)作兩坐標(biāo)軸的垂線段,這兩條垂線段與坐標(biāo)軸圍成的矩形的面積為|k|。

    2.對(duì)于雙曲線y=k/x,若在分母上加減任意一個(gè)實(shí)數(shù)(即y=k/(x±m(xù))m為常數(shù)),就相當(dāng)于將雙曲線圖象向左或右平移一個(gè)單位。

    (加一個(gè)數(shù)時(shí)向左平移,減一個(gè)數(shù)時(shí)向右平移)

    對(duì)數(shù)函數(shù)

    對(duì)數(shù)函數(shù)的一般形式為,它實(shí)際上就是指數(shù)函數(shù)的反函數(shù)。因此指數(shù)函數(shù)里對(duì)于a的規(guī)定,同樣適用于對(duì)數(shù)函數(shù)。

    右圖給出對(duì)于不同大小a所表示的函數(shù)圖形:

    可以看到對(duì)數(shù)函數(shù)的圖形只不過的指數(shù)函數(shù)的圖形的關(guān)于直線y=x的對(duì)稱圖形,因?yàn)樗鼈兓榉春瘮?shù)。

    (1)對(duì)數(shù)函數(shù)的定義域?yàn)榇笥?的實(shí)數(shù)集合。

    (2)對(duì)數(shù)函數(shù)的值域?yàn)槿繉?shí)數(shù)集合。

    (3)函數(shù)總是通過(1,0)這點(diǎn)。

    第2篇

    數(shù)列是以正整數(shù)集為定義域的函數(shù),是一列有序的數(shù)。數(shù)列中的每一個(gè)數(shù)都叫做這個(gè)數(shù)列的項(xiàng)。下面小編給大家分享一些數(shù)學(xué)數(shù)列知識(shí)點(diǎn),希望能夠幫助大家,歡迎閱讀!

    數(shù)學(xué)數(shù)列知識(shí)點(diǎn)1等差數(shù)列

    1.等差數(shù)列通項(xiàng)公式

    an=a1+(n-1)d

    n=1時(shí)a1=S1

    n≥2時(shí)an=Sn-Sn-1

    an=kn+b(k,b為常數(shù))推導(dǎo)過程:an=dn+a1-d令d=k,a1-d=b則得到an=kn+b

    2.等差中項(xiàng)

    由三個(gè)數(shù)a,A,b組成的等差數(shù)列可以堪稱最簡(jiǎn)單的等差數(shù)列。這時(shí),A叫做a與b的等差中項(xiàng)(arithmeticmean)。

    有關(guān)系:A=(a+b)÷2

    3.前n項(xiàng)和

    倒序相加法推導(dǎo)前n項(xiàng)和公式:

    Sn=a1+a2+a3+·····+an

    =a1+(a1+d)+(a1+2d)+······+[a1+(n-1)d]①

    Sn=an+an-1+an-2+······+a1

    =an+(an-d)+(an-2d)+······+[an-(n-1)d]②

    由①+②得2Sn=(a1+an)+(a1+an)+······+(a1+an)(n個(gè))=n(a1+an)

    Sn=n(a1+an)÷2

    等差數(shù)列的前n項(xiàng)和等于首末兩項(xiàng)的和與項(xiàng)數(shù)乘積的一半:

    Sn=n(a1+an)÷2=na1+n(n-1)d÷2

    Sn=dn2÷2+n(a1-d÷2)

    亦可得

    a1=2sn÷n-an=[sn-n(n-1)d÷2]÷n

    an=2sn÷n-a1

    有趣的是S2n-1=(2n-1)an,S2n+1=(2n+1)an+1

    4.等差數(shù)列性質(zhì)

    一、任意兩項(xiàng)am,an的關(guān)系為:

    an=am+(n-m)d

    它可以看作等差數(shù)列廣義的通項(xiàng)公式。

    二、從等差數(shù)列的定義、通項(xiàng)公式,前n項(xiàng)和公式還可推出:

    a1+an=a2+an-1=a3+an-2=…=ak+an-k+1,k∈N--

    三、若m,n,p,q∈N--,且m+n=p+q,則有am+an=ap+aq

    四、對(duì)任意的k∈N--,有

    Sk,S2k-Sk,S3k-S2k,…,Snk-S(n-1)k…成等差數(shù)列。

    數(shù)學(xué)數(shù)列知識(shí)點(diǎn)2等比數(shù)列

    1.等比中項(xiàng)

    如果在a與b中間插入一個(gè)數(shù)G,使a,G,b成等比數(shù)列,那么G叫做a與b的等比中項(xiàng)。

    有關(guān)系:

    注:兩個(gè)非零同號(hào)的實(shí)數(shù)的等比中項(xiàng)有兩個(gè),它們互為相反數(shù),所以G2=ab是a,G,b三數(shù)成等比數(shù)列的必要不充分條件。

    2.等比數(shù)列通項(xiàng)公式

    an=a1--q’(n-1)(其中首項(xiàng)是a1,公比是q)

    an=Sn-S(n-1)(n≥2)

    前n項(xiàng)和

    當(dāng)q≠1時(shí),等比數(shù)列的前n項(xiàng)和的公式為

    Sn=a1(1-q’n)/(1-q)=(a1-a1--q’n)/(1-q)(q≠1)

    當(dāng)q=1時(shí),等比數(shù)列的前n項(xiàng)和的公式為

    Sn=na1

    3.等比數(shù)列前n項(xiàng)和與通項(xiàng)的關(guān)系

    an=a1=s1(n=1)

    an=sn-s(n-1)(n≥2)

    4.等比數(shù)列性質(zhì)

    (1)若m、n、p、q∈N--,且m+n=p+q,則am·an=ap·aq;

    (2)在等比數(shù)列中,依次每k項(xiàng)之和仍成等比數(shù)列。

    (3)從等比數(shù)列的定義、通項(xiàng)公式、前n項(xiàng)和公式可以推出:a1·an=a2·an-1=a3·an-2=…=ak·an-k+1,k∈{1,2,…,n}

    (4)等比中項(xiàng):q、r、p成等比數(shù)列,則aq·ap=ar2,ar則為ap,aq等比中項(xiàng)。

    記πn=a1·a2…an,則有π2n-1=(an)2n-1,π2n+1=(an+1)2n+1

    另外,一個(gè)各項(xiàng)均為正數(shù)的等比數(shù)列各項(xiàng)取同底指數(shù)冪后構(gòu)成一個(gè)等差數(shù)列;反之,以任一個(gè)正數(shù)C為底,用一個(gè)等差數(shù)列的各項(xiàng)做指數(shù)構(gòu)造冪Can,則是等比數(shù)列。在這個(gè)意義下,我們說:一個(gè)正項(xiàng)等比數(shù)列與等差數(shù)列是“同構(gòu)”的。

    (5)等比數(shù)列前n項(xiàng)之和Sn=a1(1-q’n)/(1-q)

    (6)任意兩項(xiàng)am,an的關(guān)系為an=am·q’(n-m)

    (7)在等比數(shù)列中,首項(xiàng)a1與公比q都不為零。

    數(shù)學(xué)數(shù)列知識(shí)點(diǎn)3數(shù)列的相關(guān)概念

    1.數(shù)列概念

    ①數(shù)列是一種特殊的函數(shù)。其特殊性主要表現(xiàn)在其定義域和值域上。數(shù)列可以看作一個(gè)定義域?yàn)檎麛?shù)集N--或其有限子集{1,2,3,…,n}的函數(shù),其中的{1,2,3,…,n}不能省略。

    第3篇

    1、了解導(dǎo)數(shù)概念的某些實(shí)際背景(如瞬時(shí)速度、加速度、光滑曲線切線的斜率等);掌握函數(shù)在一點(diǎn)處的導(dǎo)數(shù)的定義和導(dǎo)數(shù)的幾何意義;理解導(dǎo)函數(shù)的概念。

    2、熟記基本導(dǎo)數(shù)公式;掌握兩個(gè)函數(shù)和、差、積、商的求導(dǎo)法則。了解復(fù)合函數(shù)的求導(dǎo)法則,會(huì)求某些簡(jiǎn)單函數(shù)的導(dǎo)數(shù)。

    3、理解可導(dǎo)函數(shù)的單調(diào)性與其導(dǎo)數(shù)的關(guān)系;了解可導(dǎo)函數(shù)在某點(diǎn)取得極值的必要條件和充分條件(導(dǎo)數(shù)在極值點(diǎn)兩側(cè)異號(hào));會(huì)求一些實(shí)際問題(一般指單峰函數(shù))的最大值和最小值。

    (來源:文章屋網(wǎng) )

    第4篇

    數(shù)學(xué)起源于人類早期的生產(chǎn)活動(dòng),古巴比倫人從遠(yuǎn)古時(shí)代開始已經(jīng)積累了一定的數(shù)學(xué)知識(shí),并能應(yīng)用實(shí)際問題。從數(shù)學(xué)本身看,他們的數(shù)學(xué)知識(shí)也只是觀察和經(jīng)驗(yàn)所得,沒有綜合結(jié)論和證明,但也要充分肯定他們對(duì)數(shù)學(xué)所做出的貢獻(xiàn)。那么接下來給大家分享一些關(guān)于高中數(shù)學(xué)復(fù)習(xí)知識(shí)點(diǎn),希望對(duì)大家有所幫助。

    高中數(shù)學(xué)復(fù)習(xí)知識(shí)1考點(diǎn)一:集合與簡(jiǎn)易邏輯

    集合部分一般以選擇題出現(xiàn),屬容易題。重點(diǎn)考查集合間關(guān)系的理解和認(rèn)識(shí)。近年的試題加強(qiáng)了對(duì)集合計(jì)算化簡(jiǎn)能力的考查,并向無限集發(fā)展,考查抽象思維能力。在解決這些問題時(shí),要注意利用幾何的直觀性,并注重集合表示方法的轉(zhuǎn)換與化簡(jiǎn)。簡(jiǎn)易邏輯考查有兩種形式:一是在選擇題和填空題中直接考查命題及其關(guān)系、邏輯聯(lián)結(jié)詞、“充要關(guān)系”、命題真?zhèn)蔚呐袛唷⑷Q命題和特稱命題的否定等,二是在解答題中深層次考查常用邏輯用語表達(dá)數(shù)學(xué)解題過程和邏輯推理。

    考點(diǎn)二:函數(shù)與導(dǎo)數(shù)

    函數(shù)是高考的重點(diǎn)內(nèi)容,以選擇題和填空題的為載體針對(duì)性考查函數(shù)的定義域與值域、函數(shù)的性質(zhì)、函數(shù)與方程、基本初等函數(shù)(一次和二次函數(shù)、指數(shù)、對(duì)數(shù)、冪函數(shù))的應(yīng)用等,分值約為10分,解答題與導(dǎo)數(shù)交匯在一起考查函數(shù)的性質(zhì)。導(dǎo)數(shù)部分一方面考查導(dǎo)數(shù)的運(yùn)算與導(dǎo)數(shù)的幾何意義,另一方面考查導(dǎo)數(shù)的簡(jiǎn)單應(yīng)用,如求函數(shù)的單調(diào)區(qū)間、極值與最值等,通常以客觀題的形式出現(xiàn),屬于容易題和中檔題,三是導(dǎo)數(shù)的綜合應(yīng)用,主要是和函數(shù)、不等式、方程等聯(lián)系在一起以解答題的形式出現(xiàn),如一些不等式恒成立問題、參數(shù)的取值范圍問題、方程根的個(gè)數(shù)問題、不等式的證明等問題。

    考點(diǎn)三:三角函數(shù)與平面向量

    一般是2道小題,1道綜合解答題。小題一道考查平面向量有關(guān)概念及運(yùn)算等,另一道對(duì)三角知識(shí)點(diǎn)的補(bǔ)充。大題中如果沒有涉及正弦定理、余弦定理的應(yīng)用,可能就是一道和解答題相互補(bǔ)充的三角函數(shù)的圖像、性質(zhì)或三角恒等變換的題目,也可能是考查平面向量為主的試題,要注意數(shù)形結(jié)合思想在解題中的應(yīng)用。向量重點(diǎn)考查平面向量數(shù)量積的概念及應(yīng)用,向量與直線、圓錐曲線、數(shù)列、不等式、三角函數(shù)等結(jié)合,解決角度、垂直、共線等問題是“新熱點(diǎn)”題型.

    考點(diǎn)四:數(shù)列與不等式

    不等式主要考查一元二次不等式的解法、一元二次不等式組和簡(jiǎn)單線性規(guī)劃問題、基本不等式的應(yīng)用等,通常會(huì)在小題中設(shè)置1到2道題。對(duì)不等式的工具性穿插在數(shù)列、解析幾何、函數(shù)導(dǎo)數(shù)等解答題中進(jìn)行考查.在選擇、填空題中考查等差或等比數(shù)列的概念、性質(zhì)、通項(xiàng)公式、求和公式等的靈活應(yīng)用,一道解答題大多凸顯以數(shù)列知識(shí)為工具,綜合運(yùn)用函數(shù)、方程、不等式等解決問題的能力,它們都屬于中、高檔題目.

    考點(diǎn)五:立體幾何與空間向量

    一是考查空間幾何體的結(jié)構(gòu)特征、直觀圖與三視圖;二是考查空間點(diǎn)、線、面之間的位置關(guān)系;三是考查利用空間向量解決立體幾何問題:利用空間向量證明線面平行與垂直、求空間角等(文科不要求).在高考試卷中,一般有1~2個(gè)客觀題和一個(gè)解答題,多為中檔題。

    考點(diǎn)六:解析幾何

    一般有1~2個(gè)客觀題和1個(gè)解答題,其中客觀題主要考查直線斜率、直線方程、圓的方程、直線與圓的位置關(guān)系、圓錐曲線的定義應(yīng)用、標(biāo)準(zhǔn)方程的求解、離心率的計(jì)算等,解答題則主要考查直線與橢圓、拋物線等的位置關(guān)系問題,經(jīng)常與平面向量、函數(shù)與不等式交匯,考查一些存在性問題、證明問題、定點(diǎn)與定值、最值與范圍問題等。

    考點(diǎn)七:算法復(fù)數(shù)推理與證明

    高考對(duì)算法的考查以選擇題或填空題的形式出現(xiàn),或給解答題披層“外衣”.考查的熱點(diǎn)是流程圖的識(shí)別與算法語言的閱讀理解.算法與數(shù)列知識(shí)的網(wǎng)絡(luò)交匯命題是考查的主流.復(fù)數(shù)考查的重點(diǎn)是復(fù)數(shù)的有關(guān)概念、復(fù)數(shù)的代數(shù)形式、運(yùn)算及運(yùn)算的幾何意義,一般是選擇題、填空題,難度不大.推理證明部分命題的方向主要會(huì)在函數(shù)、三角、數(shù)列、立體幾何、解析幾何等方面,單獨(dú)出題的可能性較小。對(duì)于理科,數(shù)學(xué)歸納法可能作為解答題的一小問.

    高中數(shù)學(xué)復(fù)習(xí)知識(shí)2第一、高考數(shù)學(xué)中有函數(shù)、數(shù)列、三角函數(shù)、平面向量、不等式、立體幾何等九大章節(jié)。

    主要是考函數(shù)和導(dǎo)數(shù),這是我們整個(gè)高中階段里最核心的板塊,在這個(gè)板塊里,重點(diǎn)考察兩個(gè)方面:第一個(gè)函數(shù)的性質(zhì),包括函數(shù)的單調(diào)性、奇偶性;第二是函數(shù)的解答題,重點(diǎn)考察的是二次函數(shù)和高次函數(shù),分函數(shù)和它的一些分布問題,但是這個(gè)分布重點(diǎn)還包含兩個(gè)分析就是二次方程的分布的問題,這是第一個(gè)板塊。

    第二、平面向量和三角函數(shù)。

    重點(diǎn)考察三個(gè)方面:一個(gè)是劃減與求值,第一,重點(diǎn)掌握公式,重點(diǎn)掌握五組基本公式。第二,是三角函數(shù)的圖像和性質(zhì),這里重點(diǎn)掌握正弦函數(shù)和余弦函數(shù)的性質(zhì),第三,正弦定理和余弦定理來解三角形。難度比較小。

    第三、數(shù)列。

    數(shù)列這個(gè)板塊,重點(diǎn)考兩個(gè)方面:一個(gè)通項(xiàng);一個(gè)是求和。

    第四、空間向量和立體幾何,在里面重點(diǎn)考察兩個(gè)方面:一個(gè)是證明;一個(gè)是計(jì)算。

    第五、概率和統(tǒng)計(jì)。

    這一板塊主要是屬于數(shù)學(xué)應(yīng)用問題的范疇,當(dāng)然應(yīng)該掌握下面幾個(gè)方面,第一……等可能的概率,第二………事件,第三是獨(dú)立事件,還有獨(dú)立重復(fù)事件發(fā)生的概率。

    第六、解析幾何。

    這是我們比較頭疼的問題,是整個(gè)試卷里難度比較大,計(jì)算量的題,當(dāng)然這一類題,我總結(jié)下面五類常考的題型,包括:

    第一類所講的直線和曲線的位置關(guān)系,這是考試最多的內(nèi)容。考生應(yīng)該掌握它的通法;

    第二類我們所講的動(dòng)點(diǎn)問題;

    第三類是弦長(zhǎng)問題;

    第四類是對(duì)稱問題

    第五類重點(diǎn)問題,這類題時(shí)往往覺得有思路,但是沒有答案,

    當(dāng)然這里我相等的是,這道題盡管計(jì)算量很大,但是造成計(jì)算量大的原因,往往有這個(gè)原因,我們所選方法不是很恰當(dāng),因此,在這一章里我們要掌握比較好的算法,來提高我們做題的準(zhǔn)確度,這是我們所講的第六大板塊。

    第七、押軸題。

    考生在備考復(fù)習(xí)時(shí),應(yīng)該重點(diǎn)不等式計(jì)算的方法,雖然說難度比較大,我建議考生,采取分部得分整個(gè)試卷不要留空白。這是高考所考的七大板塊核心的考點(diǎn)。

    高中數(shù)學(xué)復(fù)習(xí)知識(shí)3一、求動(dòng)點(diǎn)的軌跡方程的基本步驟

    ⒈建立適當(dāng)?shù)淖鴺?biāo)系,設(shè)出動(dòng)點(diǎn)M的坐標(biāo);

    ⒉寫出點(diǎn)M的集合;

    ⒊列出方程=0;

    ⒋化簡(jiǎn)方程為最簡(jiǎn)形式;

    ⒌檢驗(yàn)。

    二、求動(dòng)點(diǎn)的軌跡方程的常用方法:求軌跡方程的方法有多種,常用的有直譯法、定義法、相關(guān)點(diǎn)法、參數(shù)法和交軌法等。

    ⒈直譯法:直接將條件翻譯成等式,整理化簡(jiǎn)后即得動(dòng)點(diǎn)的軌跡方程,這種求軌跡方程的方法通常叫做直譯法。

    ⒉定義法:如果能夠確定動(dòng)點(diǎn)的軌跡滿足某種已知曲線的定義,則可利用曲線的定義寫出方程,這種求軌跡方程的方法叫做定義法。

    ⒊相關(guān)點(diǎn)法:用動(dòng)點(diǎn)Q的坐標(biāo)x,y表示相關(guān)點(diǎn)P的坐標(biāo)x0、y0,然后代入點(diǎn)P的坐標(biāo)(x0,y0)所滿足的曲線方程,整理化簡(jiǎn)便得到動(dòng)點(diǎn)Q軌跡方程,這種求軌跡方程的方法叫做相關(guān)點(diǎn)法。

    ⒋參數(shù)法:當(dāng)動(dòng)點(diǎn)坐標(biāo)x、y之間的直接關(guān)系難以找到時(shí),往往先尋找x、y與某一變數(shù)t的關(guān)系,得再消去參變數(shù)t,得到方程,即為動(dòng)點(diǎn)的軌跡方程,這種求軌跡方程的方法叫做參數(shù)法。

    ⒌交軌法:將兩動(dòng)曲線方程中的參數(shù)消去,得到不含參數(shù)的方程,即為兩動(dòng)曲線交點(diǎn)的軌跡方程,這種求軌跡方程的方法叫做交軌法。

    -直譯法:求動(dòng)點(diǎn)軌跡方程的一般步驟

    ①建系——建立適當(dāng)?shù)淖鴺?biāo)系;

    ②設(shè)點(diǎn)——設(shè)軌跡上的任一點(diǎn)P(x,y);

    ③列式——列出動(dòng)點(diǎn)p所滿足的關(guān)系式;

    ④代換——依條件的特點(diǎn),選用距離公式、斜率公式等將其轉(zhuǎn)化為關(guān)于X,Y的方程式,并化簡(jiǎn);

    ⑤證明——證明所求方程即為符合條件的動(dòng)點(diǎn)軌跡方程。

    高中數(shù)學(xué)復(fù)習(xí)知識(shí)41.進(jìn)行集合的交、并、補(bǔ)運(yùn)算時(shí),不要忘了全集和空集的特殊情況,不要忘記了借助數(shù)軸和文氏圖進(jìn)行求解.

    2.在應(yīng)用條件時(shí),易A忽略是空集的情況

    3.你會(huì)用補(bǔ)集的思想解決有關(guān)問題嗎?

    4.簡(jiǎn)單命題與復(fù)合命題有什么區(qū)別?四種命題之間的相互關(guān)系是什么?如何判斷充分與必要條件?

    5.你知道“否命題”與“命題的否定形式”的區(qū)別.

    6.求解與函數(shù)有關(guān)的問題易忽略定義域優(yōu)先的原則.

    7.判斷函數(shù)奇偶性時(shí),易忽略檢驗(yàn)函數(shù)定義域是否關(guān)于原點(diǎn)對(duì)稱.

    8.求一個(gè)函數(shù)的解析式和一個(gè)函數(shù)的反函數(shù)時(shí),易忽略標(biāo)注該函數(shù)的定義域.

    9.原函數(shù)在區(qū)間[-a,a]上單調(diào)遞增,則一定存在反函數(shù),且反函數(shù)也單調(diào)遞增;但一個(gè)函數(shù)存在反函數(shù),此函數(shù)不一定單調(diào)

    10.你熟練地掌握了函數(shù)單調(diào)性的證明方法嗎?定義法(取值,作差,判正負(fù))和導(dǎo)數(shù)法

    11.求函數(shù)單調(diào)性時(shí),易錯(cuò)誤地在多個(gè)單調(diào)區(qū)間之間添加符號(hào)“∪”和“或”;單調(diào)區(qū)間不能用集合或不等式表示.

    12.求函數(shù)的值域必須先求函數(shù)的定義域。

    13.如何應(yīng)用函數(shù)的單調(diào)性與奇偶性解題?①比較函數(shù)值的大小;②解抽象函數(shù)不等式;③求參數(shù)的范圍(恒成立問題).這幾種基本應(yīng)用你掌握了嗎?

    14.解對(duì)數(shù)函數(shù)問題時(shí),你注意到真數(shù)與底數(shù)的限制條件了嗎?

    (真數(shù)大于零,底數(shù)大于零且不等于1)字母底數(shù)還需討論

    15.三個(gè)二次(哪三個(gè)二次?)的關(guān)系及應(yīng)用掌握了嗎?如何利用二次函數(shù)求最值?

    16.用換元法解題時(shí)易忽略換元前后的等價(jià)性,易忽略參數(shù)的范圍。

    17.“實(shí)系數(shù)一元二次方程有實(shí)數(shù)解”轉(zhuǎn)化時(shí),你是否注意到:當(dāng)時(shí),“方程有解”不能轉(zhuǎn)化為。

    若原題中沒有指出是二次方程,二次函數(shù)或二次不等式,你是否考慮到二次項(xiàng)系數(shù)可能為的零的情形?

    18.利用均值不等式求最值時(shí),你是否注意到:“一正;二定;三等”.

    19.絕對(duì)值不等式的解法及其幾何意義是什么?

    20.解分式不等式應(yīng)注意什么問題?用“根軸法”解整式(分式)不等式的注意事項(xiàng)是什么?

    21.解含參數(shù)不等式的通法是“定義域?yàn)榍疤幔瘮?shù)的單調(diào)性為基礎(chǔ),分類討論是關(guān)鍵”,注意解完之后要寫上:“綜上,原不等式的解集是……”.

    22.在求不等式的解集、定義域及值域時(shí),其結(jié)果一定要用集合或區(qū)間表示;不能用不等式表示.

    23.兩個(gè)不等式相乘時(shí),必須注意同向同正時(shí)才能相乘,即同向同正可乘;同時(shí)要注意“同號(hào)可倒”即a>b>0,a

    24.解決一些等比數(shù)列的前項(xiàng)和問題,你注意到要對(duì)公比及兩種情況進(jìn)行討論了嗎?

    25.在“已知,求”的問題中,你在利用公式時(shí)注意到了嗎?(時(shí),應(yīng)有)需要驗(yàn)證,有些題目通項(xiàng)是分段函數(shù)。

    26.你知道存在的條件嗎?(你理解數(shù)列、有窮數(shù)列、無窮數(shù)列的概念嗎?你知道無窮數(shù)列的前項(xiàng)和與所有項(xiàng)的和的不同嗎?什么樣的無窮等比數(shù)列的所有項(xiàng)的和必定存在?

    27.數(shù)列單調(diào)性問題能否等同于對(duì)應(yīng)函數(shù)的單調(diào)性問題?(數(shù)列是特殊函數(shù),但其定義域中的值不是連續(xù)的。

    )

    28.應(yīng)用數(shù)學(xué)歸納法一要注意步驟齊全,二要注意從到過程中,先假設(shè)時(shí)成立,再結(jié)合一些數(shù)學(xué)方法用來證明時(shí)也成立。

    29.正角、負(fù)角、零角、象限角的概念你清楚嗎?,若角的終邊在坐標(biāo)軸上,那它歸哪個(gè)象限呢?你知道銳角與第一象限的角;終邊相同的角和相等的角的區(qū)別嗎?

    30.三角函數(shù)的定義及單位圓內(nèi)的三角函數(shù)線(正弦線、余弦線、正切線)的定義你知道嗎?

    31.在解三角問題時(shí),你注意到正切函數(shù)、余切函數(shù)的定義域了嗎?你注意到正弦函數(shù)、余弦函數(shù)的有界性了嗎?

    32.你還記得三角化簡(jiǎn)的通性通法嗎?(切割化弦、降冪公式、用三角公式轉(zhuǎn)化出現(xiàn)特殊角.異角化同角,異名化同名,高次化低次)

    33.反正弦、反余弦、反正切函數(shù)的取值范圍分別是

    34.你還記得某些特殊角的三角函數(shù)值嗎?

    35.掌握正弦函數(shù)、余弦函數(shù)及正切函數(shù)的圖象和性質(zhì).你會(huì)寫三角函數(shù)的單調(diào)區(qū)間嗎?會(huì)寫簡(jiǎn)單的三角不等式的解集嗎?(要注意數(shù)形結(jié)合與書寫規(guī)范,可別忘了),你是否清楚函數(shù)的圖象可以由函數(shù)經(jīng)過怎樣的變換得到嗎?

    36.函數(shù)的圖象的平移,方程的平移以及點(diǎn)的平移公式易混:

    (1)函數(shù)的圖象的平移為“左+右-,上+下-”;如函數(shù)的圖象左移2個(gè)單位且下移3個(gè)單位得到的圖象的解析式為y=2(x+2)+4-3,即y=2x+5.

    (2)方程表示的圖形的平移為“左+右-,上-下+”;如直線左移2個(gè)個(gè)單位且下移3個(gè)單位得到的圖象的解析式為2(x+2)-(y+3)+4=0,即y=2x+5.

    (3)點(diǎn)的平移公式:點(diǎn)P(x,y)按向量平移到點(diǎn)P(x,y),則x=x+hy=y+k.

    37.在三角函數(shù)中求一個(gè)角時(shí),注意考慮兩方面了嗎?(先求出某一個(gè)三角函數(shù)值,再判定角的范圍)

    38.形如的周期都是,但的周期為。

    39.正弦定理時(shí)易忘比值還等于2R。

    高中數(shù)學(xué)復(fù)習(xí)知識(shí)5(1)先看“充分條件和必要條件”

    當(dāng)命題“若p則q”為真時(shí),可表示為p=>q,則我們稱p為q的充分條件,q是p的必要條件。這里由p=>q,得出p為q的充分條件是容易理解的。

    但為什么說q是p的必要條件呢?

    事實(shí)上,與“p=>q”等價(jià)的逆否命題是“非q=>非p”。它的意思是:若q不成立,則p一定不成立。這就是說,q對(duì)于p是必不可少的,因而是必要的。

    (2)再看“充要條件”

    若有p=>q,同時(shí)q=>p,則p既是q的充分條件,又是必要條件。簡(jiǎn)稱為p是q的充要條件。記作pq

    回憶一下初中學(xué)過的“等價(jià)于”這一概念;如果從命題A成立可以推出命題B成立,反過來,從命題B成立也可以推出命題A成立,那么稱A等價(jià)于B,記作AB。“充要條件”的含義,實(shí)際上與“等價(jià)于”的含義完全相同。也就是說,如果命題A等價(jià)于命題B,那么我們說命題A成立的充要條件是命題B成立;同時(shí)有命題B成立的充要條件是命題A成立。

    (3)定義與充要條件

    數(shù)學(xué)中,只有A是B的充要條件時(shí),才用A去定義B,因此每個(gè)定義中都包含一個(gè)充要條件。如“兩組對(duì)邊分別平行的四邊形叫做平行四邊形”這一定義就是說,一個(gè)四邊形為平行四邊形的充要條件是它的兩組對(duì)邊分別平行。

    顯然,一個(gè)定理如果有逆定理,那么定理、逆定理合在一起,可以用一個(gè)含有充要條件的語句來表示。

    第5篇

    書讀的越多而不加思考,你就會(huì)覺得你知道得很多;而當(dāng)你讀書而思考得越多的時(shí)候,你就會(huì)越清楚地看到,你知道得很少。那么接下來給大家分享一些關(guān)于高中必修三數(shù)學(xué)知識(shí),希望對(duì)大家有所幫助。

    高中必修三數(shù)學(xué)知識(shí)1一.隨機(jī)事件的概率及概率的意義

    1、基本概念:

    (1)必然事件:在條件S下,一定會(huì)發(fā)生的事件,叫相對(duì)于條件S的必然事件;

    (2)不可能事件:在條件S下,一定不會(huì)發(fā)生的事件,叫相對(duì)于條件S的不可能事件;

    (3)確定事件:必然事件和不可能事件統(tǒng)稱為相對(duì)于條件S的確定事件;

    (4)隨機(jī)事件:在條件S下可能發(fā)生也可能不發(fā)生的事件,叫相對(duì)于條件S的隨機(jī)事件;

    (5)頻數(shù)與頻率:在相同的條件S下重復(fù)n次試驗(yàn),觀察某一事件A是否出現(xiàn),稱n次試驗(yàn)中事件A出現(xiàn)的次數(shù)nA為事件A出現(xiàn)的頻數(shù);對(duì)于給定的隨機(jī)事件A,如果隨著試驗(yàn)次數(shù)的增加,事件A發(fā)生的頻率fn(A)穩(wěn)定在某個(gè)常數(shù)上,把這個(gè)常數(shù)記作P(A),稱為事件A的概率。

    (6)頻率與概率的區(qū)別與聯(lián)系:隨機(jī)事件的頻率,指此事件發(fā)生的次數(shù)nA與試驗(yàn)總次數(shù)n的比值,它具有一定的穩(wěn)定性,總在某個(gè)常數(shù)附近擺動(dòng),且隨著試驗(yàn)次數(shù)的不斷增多,這種擺動(dòng)幅度越來越小。我們把這個(gè)常數(shù)叫做隨機(jī)事件的概率,概率從數(shù)量上反映了隨機(jī)事件發(fā)生的可能性的大小。頻率在大量重復(fù)試驗(yàn)的前提下可以近似地作為這個(gè)事件的概率

    二.概率的基本性質(zhì)

    1、基本概念:

    (1)事件的包含、并事件、交事件、相等事件

    (2)若A∩B為不可能事件,即A∩B=ф,那么稱事件A與事件B互斥;

    (3)若A∩B為不可能事件,A∪B為必然事件,那么稱事件A與事件B互為對(duì)立事件;

    (4)當(dāng)事件A與B互斥時(shí),滿足加法公式:P(A∪B)=P(A)+P(B);若事件A與B為對(duì)立事件,則A∪B為必然事件,所以

    P(A∪B)=P(A)+P(B)=1,于是有P(A)=1—P(B)

    2、概率的基本性質(zhì):

    1)必然事件概率為1,不可能事件概率為0,因此0≤P(A)≤1;

    2)當(dāng)事件A與B互斥時(shí),滿足加法公式:P(A∪B)=P(A)+P(B);

    3)若事件A與B為對(duì)立事件,則A∪B為必然事件,所以P(A∪B)=P(A)+P(B)=1,于是有P(A)=1—P(B);

    4)互斥事件與對(duì)立事件的區(qū)別與聯(lián)系,互斥事件是指事件A與事件B在一次試驗(yàn)中不會(huì)同時(shí)發(fā)生,其具體包括三種不同的情形:(1)事件A發(fā)生且事件B不發(fā)生;

    (2)事件A不發(fā)生且事件B發(fā)生;

    (3)事件A與事件B同時(shí)不發(fā)生,而對(duì)立事件是指事件A與事件B有且僅有一個(gè)發(fā)生,其包括兩種情形;

    (1)事件A發(fā)生B不發(fā)生;

    (2)事件B發(fā)生事件A不發(fā)生,對(duì)立事件互斥事件的特殊情形。三.古典概型及隨機(jī)數(shù)的產(chǎn)生

    (1)古典概型的使用條件:試驗(yàn)結(jié)果的有限性和所有結(jié)果的等可能性。

    (2)古典概型的解題步驟;①求出總的基本事件數(shù);

    ②求出事件A所包含的基本事件數(shù),然后利用公式P(A)=

    四.幾何概型及均勻隨機(jī)數(shù)的產(chǎn)生

    基本概念:(1)幾何概率模型:如果每個(gè)事件發(fā)生的概率只與構(gòu)成該事件區(qū)域的長(zhǎng)度(面積或體積)成比例,則稱這樣的概率模型為幾何概率模型;

    (2)幾何概型的概率公式:P(A)=;

    (3)幾何概型的特點(diǎn):1)試驗(yàn)中所有可能出現(xiàn)的結(jié)果(基本事件)有無限多個(gè);

    2)每個(gè)基本事件出現(xiàn)的可能性相等.

    高中必修三數(shù)學(xué)知識(shí)2(1)指數(shù)函數(shù)的定義域?yàn)樗袑?shí)數(shù)的集合,這里的前提是a大于0,對(duì)于a不大于0的情況,則必然使得函數(shù)的定義域不存在連續(xù)的區(qū)間,因此我們不予考慮。

    (2)指數(shù)函數(shù)的值域?yàn)榇笥?的實(shí)數(shù)集合。

    (3)函數(shù)圖形都是下凹的。

    (4)a大于1,則指數(shù)函數(shù)單調(diào)遞增;a小于1大于0,則為單調(diào)遞減的。

    (5)可以看到一個(gè)顯然的規(guī)律,就是當(dāng)a從0趨向于無窮大的過程中(當(dāng)然不能等于0),函數(shù)的曲線從分別接近于Y軸與X軸的正半軸的單調(diào)遞減函數(shù)的位置,趨向分別接近于Y軸的正半軸與X軸的負(fù)半軸的單調(diào)遞增函數(shù)的位置。其中水平直線y=1是從遞減到遞增的一個(gè)過渡位置。

    (6)函數(shù)總是在某一個(gè)方向上無限趨向于X軸,永不相交。

    (7)函數(shù)總是通過(0,1)這點(diǎn)。

    (8)顯然指數(shù)函數(shù)無界。

    奇偶性

    定義

    一般地,對(duì)于函數(shù)f(x)

    (1)如果對(duì)于函數(shù)定義域內(nèi)的任意一個(gè)x,都有f(-x)=-f(x),那么函數(shù)f(x)就叫做奇函數(shù)。

    (2)如果對(duì)于函數(shù)定義域內(nèi)的任意一個(gè)x,都有f(-x)=f(x),那么函數(shù)f(x)就叫做偶函數(shù)。

    (3)如果對(duì)于函數(shù)定義域內(nèi)的任意一個(gè)x,f(-x)=-f(x)與f(-x)=f(x)同時(shí)成立,那么函數(shù)f(x)既是奇函數(shù)又是偶函數(shù),稱為既奇又偶函數(shù)。

    (4)如果對(duì)于函數(shù)定義域內(nèi)的任意一個(gè)x,f(-x)=-f(x)與f(-x)=f(x)都不能成立,那么函數(shù)f(x)既不是奇函數(shù)又不是偶函數(shù),稱為非奇非偶函數(shù)。

    高中必修三數(shù)學(xué)知識(shí)31、柱、錐、臺(tái)、球的結(jié)構(gòu)特征

    (1)棱柱:

    定義:有兩個(gè)面互相平行,其余各面都是四邊形,且每相鄰兩個(gè)四邊形的公共邊都互相平行,由這些面所圍成的幾何體。

    分類:以底面多邊形的邊數(shù)作為分類的標(biāo)準(zhǔn)分為三棱柱、四棱柱、五棱柱等。

    表示:用各頂點(diǎn)字母,如五棱柱或用對(duì)角線的端點(diǎn)字母,如五棱柱。

    幾何特征:兩底面是對(duì)應(yīng)邊平行的全等多邊形;側(cè)面、對(duì)角面都是平行四邊形;側(cè)棱平行且相等;平行于底面的截面是與底面全等的多邊形。

    (2)棱錐

    定義:有一個(gè)面是多邊形,其余各面都是有一個(gè)公共頂點(diǎn)的三角形,由這些面所圍成的幾何體。

    分類:以底面多邊形的邊數(shù)作為分類的標(biāo)準(zhǔn)分為三棱錐、四棱錐、五棱錐等

    表示:用各頂點(diǎn)字母,如五棱錐

    幾何特征:側(cè)面、對(duì)角面都是三角形;平行于底面的截面與底面相似,其相似比等于頂點(diǎn)到截面距離與高的比的平方。

    (3)棱臺(tái):

    定義:用一個(gè)平行于棱錐底面的平面去截棱錐,截面和底面之間的部分。

    分類:以底面多邊形的邊數(shù)作為分類的標(biāo)準(zhǔn)分為三棱態(tài)、四棱臺(tái)、五棱臺(tái)等

    表示:用各頂點(diǎn)字母,如五棱臺(tái)

    幾何特征:①上下底面是相似的平行多邊形②側(cè)面是梯形③側(cè)棱交于原棱錐的頂點(diǎn)

    (4)圓柱:

    定義:以矩形的一邊所在的直線為軸旋轉(zhuǎn),其余三邊旋轉(zhuǎn)所成的曲面所圍成的幾何體。

    幾何特征:①底面是全等的圓;②母線與軸平行;③軸與底面圓的半徑垂直;④側(cè)面展開圖是一個(gè)矩形。

    (5)圓錐:

    定義:以直角三角形的一條直角邊為旋轉(zhuǎn)軸,旋轉(zhuǎn)一周所成的曲面所圍成的幾何體。

    幾何特征:①底面是一個(gè)圓;②母線交于圓錐的頂點(diǎn);③側(cè)面展開圖是一個(gè)扇形。

    (6)圓臺(tái):

    定義:用一個(gè)平行于圓錐底面的平面去截圓錐,截面和底面之間的部分

    幾何特征:①上下底面是兩個(gè)圓;②側(cè)面母線交于原圓錐的頂點(diǎn);③側(cè)面展開圖是一個(gè)弓形。

    (7)球體:

    定義:以半圓的直徑所在直線為旋轉(zhuǎn)軸,半圓面旋轉(zhuǎn)一周形成的幾何體

    幾何特征:①球的截面是圓;②球面上任意一點(diǎn)到球心的距離等于半徑。

    2、空間幾何體的三視圖

    定義三視圖:正視圖(光線從幾何體的前面向后面正投影);側(cè)視圖(從左向右)、俯視圖(從上向下)

    注:正視圖反映了物體上下、左右的位置關(guān)系,即反映了物體的高度和長(zhǎng)度;

    俯視圖反映了物體左右、前后的位置關(guān)系,即反映了物體的長(zhǎng)度和寬度;

    側(cè)視圖反映了物體上下、前后的位置關(guān)系,即反映了物體的高度和寬度。

    3、空間幾何體的直觀圖——斜二測(cè)畫法

    斜二測(cè)畫法特點(diǎn):

    ①原來與x軸平行的線段仍然與x平行且長(zhǎng)度不變;

    ②原來與y軸平行的線段仍然與y平行,長(zhǎng)度為原來的一半。

    高中必修三數(shù)學(xué)知識(shí)41.輾轉(zhuǎn)相除法是用于求公約數(shù)的一種方法,這種算法由歐幾里得在公元前年左右首先提出,因而又叫歐幾里得算法.

    2.所謂輾轉(zhuǎn)相法,就是對(duì)于給定的兩個(gè)數(shù),用較大的數(shù)除以較小的數(shù).若余數(shù)不為零,則將較小的數(shù)和余數(shù)構(gòu)成新的一對(duì)數(shù),繼續(xù)上面的除法,直到大數(shù)被小數(shù)除盡,則這時(shí)的除數(shù)就是原來兩個(gè)數(shù)的公約數(shù).

    3.更相減損術(shù)是一種求兩數(shù)公約數(shù)的方法.其基本過程是:對(duì)于給定的兩數(shù),用較大的數(shù)減去較小的數(shù),接著把所得的差與較小的數(shù)比較,并以大數(shù)減小數(shù),繼續(xù)這個(gè)操作,直到所得的數(shù)相等為止,則這個(gè)數(shù)就是所求的公約數(shù).

    4.秦九韶算法是一種用于計(jì)算一元二次多項(xiàng)式的值的方法.

    5.常用的排序方法是直接插入排序和冒泡排序.

    6.進(jìn)位制是人們?yōu)榱擞?jì)數(shù)和運(yùn)算方便而約定的記數(shù)系統(tǒng).“滿進(jìn)一”,就是k進(jìn)制,進(jìn)制的基數(shù)是k.

    7.將進(jìn)制的數(shù)化為十進(jìn)制數(shù)的方法是:先將進(jìn)制數(shù)寫成用各位上的數(shù)字與k的冪的乘積之和的形式,再按照十進(jìn)制數(shù)的運(yùn)算規(guī)則計(jì)算出結(jié)果.

    8.將十進(jìn)制數(shù)化為進(jìn)制數(shù)的方法是:除k取余法.即用k連續(xù)去除該十進(jìn)制數(shù)或所得的商,直到商為零為止,然后把每次所得的余數(shù)倒著排成一個(gè)數(shù)就是相應(yīng)的進(jìn)制數(shù).

    重難點(diǎn)突破

    1.重點(diǎn):理解輾轉(zhuǎn)相除法與更相減損術(shù)的原理,會(huì)求兩個(gè)數(shù)的公約數(shù);理解秦九韶算法原理,會(huì)求一元多項(xiàng)式的值;會(huì)對(duì)一組數(shù)據(jù)按照一定的規(guī)則進(jìn)行排序;理解進(jìn)位制,能進(jìn)行各種進(jìn)位制之間的轉(zhuǎn)化.

    2.難點(diǎn):秦九韶算法求一元多項(xiàng)式的值及各種進(jìn)位制之間的轉(zhuǎn)化.

    3.重難點(diǎn):理解輾轉(zhuǎn)相除法與更相減損術(shù)、秦九韶算法原理、排序方法、進(jìn)位制之間的轉(zhuǎn)化方法.

    【同步練習(xí)題】

    1、在對(duì)16和12求公約數(shù)時(shí),整個(gè)操作如下:(16,12)(4,12)(4,8)(4,4),由此可以看出12和16的公約數(shù)是()

    A、4B、12C、16D、8

    2、下列各組關(guān)于公約數(shù)的說法中不正確的是()

    A、16和12的公約數(shù)是4B、78和36的公約數(shù)是6

    C、85和357的公約數(shù)是34D、105和315的公約數(shù)是105

    高中必修三數(shù)學(xué)知識(shí)5總體和樣本

    ①在統(tǒng)計(jì)學(xué)中,把研究對(duì)象的全體叫做總體。

    ②把每個(gè)研究對(duì)象叫做個(gè)體。

    ③把總體中個(gè)體的總數(shù)叫做總體容量。

    ④為了研究總體的有關(guān)性質(zhì),一般從總體中隨機(jī)抽取一部分:x1,x2,....,x-x研究,我們稱它為樣本.其中個(gè)體的個(gè)數(shù)稱為樣本容量。

    簡(jiǎn)單隨機(jī)抽樣

    也叫純隨機(jī)抽樣。就是從總體中不加任何分組、劃類、排隊(duì)等,完全隨。

    機(jī)地抽取調(diào)查單位。特點(diǎn)是:每個(gè)樣本單位被抽中的可能性相同(概率相等),樣本的每個(gè)單位完全獨(dú)立,彼此間無一定的關(guān)聯(lián)性和排斥性。簡(jiǎn)單隨機(jī)抽樣是其它各種抽樣形式的基礎(chǔ),高三。通常只是在總體單位之間差異程度較小和數(shù)目較少時(shí),才采用這種方法。

    簡(jiǎn)單隨機(jī)抽樣常用的方法

    ①抽簽法

    ②隨機(jī)數(shù)表法

    ③計(jì)算機(jī)模擬法

    ④使用統(tǒng)計(jì)軟件直接抽取。

    在簡(jiǎn)單隨機(jī)抽樣的樣本容量設(shè)計(jì)中,主要考慮:

    ①總體變異情況;

    ②允許誤差范圍;

    ③概率保證程度。

    抽簽法

    ①給調(diào)查對(duì)象群體中的每一個(gè)對(duì)象編號(hào);

    第6篇

    高中數(shù)學(xué)難度更大,難度在于它的深度和廣度,但如果能理清思路,抓住重點(diǎn),多實(shí)踐,變?cè)覟楸┚⒎遣豢赡堋8咧袛?shù)學(xué)知識(shí)點(diǎn)總結(jié)有哪些你知道嗎?共同閱讀高中數(shù)學(xué)知識(shí)點(diǎn)總結(jié),請(qǐng)您閱讀!

    高中數(shù)學(xué)知識(shí)點(diǎn)匯總1.必修課程由5個(gè)模塊組成:

    必修1:集合,函數(shù)概念與基本初等函數(shù)(指數(shù)函數(shù),冪函數(shù),對(duì)數(shù)函數(shù))

    必修2:立體幾何初步、平面解析幾何初步。

    必修3:算法初步、統(tǒng)計(jì)、概率。

    必修4:基本初等函數(shù)(三角函數(shù))、平面向量、三角恒等變換。

    必修5:解三角形、數(shù)列、不等式。

    以上所有的知識(shí)點(diǎn)是所有高中生必須掌握的,而且要懂得運(yùn)用。

    選修課程分為4個(gè)系列:

    系列1:2個(gè)模塊

    選修1-1:常用邏輯用語、圓錐曲線與方程、空間向量與立體幾何。

    選修1-2:統(tǒng)計(jì)案例、推理與證明、數(shù)系的擴(kuò)充與復(fù)數(shù)、框圖

    系列2:3個(gè)模塊

    選修2-1:常用邏輯用語、圓錐曲線與方程、空間向量與立體幾何

    選修2-2:導(dǎo)數(shù)及其應(yīng)用、推理與證明、數(shù)系的擴(kuò)充與復(fù)數(shù)

    選修2-3:計(jì)數(shù)原理、隨機(jī)變量及其分布列、統(tǒng)計(jì)案例

    選修4-1:幾何證明選講

    選修4-4:坐標(biāo)系與參數(shù)方程

    選修4-5:不等式選講

    2.重難點(diǎn)及其考點(diǎn):

    重點(diǎn):函數(shù),數(shù)列,三角函數(shù),平面向量,圓錐曲線,立體幾何,導(dǎo)數(shù)

    難點(diǎn):函數(shù),圓錐曲線

    高考相關(guān)考點(diǎn):

    1.集合與邏輯:集合的邏輯與運(yùn)算(一般出現(xiàn)在高考卷的第一道選擇題)、簡(jiǎn)易邏輯、充要條件

    2.函數(shù):映射與函數(shù)、函數(shù)解析式與定義域、值域與最值、反函數(shù)、三大性質(zhì)、函數(shù)圖象、指數(shù)函數(shù)、對(duì)數(shù)函數(shù)、函數(shù)的應(yīng)用

    3.數(shù)列:數(shù)列的有關(guān)概念、等差數(shù)列、等比數(shù)列、數(shù)列求通項(xiàng)、求和

    4.三角函數(shù):有關(guān)概念、同角關(guān)系與誘導(dǎo)公式、和差倍半公式、求值、化簡(jiǎn)、證明、三角函數(shù)的圖像及其性質(zhì)、應(yīng)用

    5.平面向量:初等運(yùn)算、坐標(biāo)運(yùn)算、數(shù)量積及其應(yīng)用

    6.不等式:概念與性質(zhì)、均值不等式、不等式的證明、不等式的解法、絕對(duì)值不等式(經(jīng)常出現(xiàn)在大題的選做題里)、不等式的應(yīng)用

    7.直線與圓的方程:直線的方程、兩直線的位置關(guān)系、線性規(guī)劃、圓、直線與圓的位置關(guān)系

    8.圓錐曲線方程:橢圓、雙曲線、拋物線、直線與圓錐曲線的位置關(guān)系、軌跡問題、圓錐曲線的應(yīng)用

    9.直線、平面、簡(jiǎn)單幾何體:空間直線、直線與平面、平面與平面、棱柱、棱錐、球、空間向量

    10.排列、組合和概率:排列、組合應(yīng)用題、二項(xiàng)式定理及其應(yīng)用

    11.概率與統(tǒng)計(jì):概率、分布列、期望、方差、抽樣、正態(tài)分布

    12.導(dǎo)數(shù):導(dǎo)數(shù)的概念、求導(dǎo)、導(dǎo)數(shù)的應(yīng)用

    13.復(fù)數(shù):復(fù)數(shù)的概念與運(yùn)算

    高中數(shù)學(xué)學(xué)習(xí)要注意的方法1.用心感受數(shù)學(xué),欣賞數(shù)學(xué),掌握數(shù)學(xué)思想。

    有位數(shù)學(xué)家曾說過:數(shù)學(xué)是用最小的空間集中了的理想。

    2.要重視數(shù)學(xué)概念的理解。

    高一數(shù)學(xué)與初中數(shù)學(xué)的區(qū)別是概念多并且較抽象,學(xué)起來“味道”同以往很不一樣,解題方法通常就來自概念本身。學(xué)習(xí)概念時(shí),僅僅知道概念在字面上的含義是不夠的,還須理解其隱含著的深層次的含義并掌握各種等價(jià)的表達(dá)方式。例如,為什么函數(shù)y=f(x)與y=f-1(x)的圖象關(guān)于直線y=x對(duì)稱,而y=f(x)與x=f-1(y)卻有相同的圖象;又如,為什么當(dāng)f(x-1)=f(1-x)時(shí),函數(shù)y=f(x)的圖象關(guān)于y軸對(duì)稱,而y=f(x-1)與y=f(1-x)的圖象卻關(guān)于直線x=1對(duì)稱,不透徹理解一個(gè)圖象的對(duì)稱性與兩個(gè)圖象的對(duì)稱關(guān)系的區(qū)別,兩者很容易混淆。

    3.對(duì)數(shù)學(xué)學(xué)習(xí)應(yīng)抱著二個(gè)詞――“嚴(yán)謹(jǐn),創(chuàng)新”,所謂嚴(yán)謹(jǐn),就是在平時(shí)訓(xùn)練的時(shí)候,不能一絲馬虎,是對(duì)就是對(duì),錯(cuò)了就一定要承認(rèn),要找原因,要改正,萬不可以抱著“好像是對(duì)的”的心態(tài),蒙混過關(guān)。

    至于創(chuàng)新呢,要求就高一點(diǎn)了,要求在你會(huì)解決此問題的情況下,你還會(huì)不會(huì)用另一種更簡(jiǎn)單,更有效的方法,這就需要扎實(shí)的基本功。平時(shí),我們看到一些人,做題時(shí)從不用常規(guī)方法,總愛自己創(chuàng)造一些方法以“偏方”解題,雖然有時(shí)候也能讓他撞上一些好的方法,但我認(rèn)為是不可取的。因?yàn)槟闶紫缺仨殞W(xué)會(huì)用常規(guī)的方法,在此基礎(chǔ)上你才能創(chuàng)新,你的創(chuàng)新才有意義,而那些總是片面“追求”新方法的人,他們的思維有如空中樓閣,必然是曇花一現(xiàn)。當(dāng)然我們要有創(chuàng)新意識(shí),但是,創(chuàng)新是有條件的,必須有扎實(shí)的基礎(chǔ),因此我想勸一下那些基礎(chǔ)不牢,而平時(shí)總愛用“偏方”的同學(xué)們,該是清醒一下的時(shí)候了,千萬不要繼續(xù)鉆那可憐的牛角尖啊!

    4.建立良好的學(xué)習(xí)數(shù)學(xué)習(xí)慣,習(xí)慣是經(jīng)過重復(fù)練習(xí)而鞏固下來的穩(wěn)重持久的條件反射和自然需要。

    建立良好的學(xué)習(xí)數(shù)學(xué)習(xí)慣,會(huì)使自己學(xué)習(xí)感到有序而輕松。高中數(shù)學(xué)的良好習(xí)慣應(yīng)是:多質(zhì)疑、勤思考、好動(dòng)手、重歸納、注意應(yīng)用。學(xué)生在學(xué)習(xí)數(shù)學(xué)的過程中,要把教師所傳授的知識(shí)翻譯成為自己的特殊語言,并永久記憶在自己的腦海中。另外還要保證每天有一定的自學(xué)時(shí)間,以便加寬知識(shí)面和培養(yǎng)自己再學(xué)習(xí)能力。

    5.多聽、多作、多想、多問:此“四多”乃培養(yǎng)數(shù)學(xué)能力的要訣,“聽”就是在“學(xué)”,作是“練習(xí)”(作課本上的習(xí)題或其它問題),也就是把您所學(xué)的,應(yīng)用到解決問題上。

    “聽”與“作”難免會(huì)碰到疑難,那就要靠“想”的功夫去打通它,假如還想不通,解不來就要“問”――問同學(xué)、問老師或參考書,務(wù)必將疑難解決為止。這就是所謂的學(xué)問:既學(xué)又問。

    6.要有毅力、要有恒心:基本上要有一個(gè)認(rèn)識(shí):數(shù)學(xué)能力乃是長(zhǎng)期努力累積的結(jié)果,而不是一朝一夕之功所能達(dá)到的。

    您可能花一天或一個(gè)晚上的功夫把某課文背得滾瓜爛熟,第二天考背誦時(shí)對(duì)答如流而獲高分,也有可能花了一兩個(gè)禮拜的時(shí)間拼命學(xué)數(shù)學(xué),但到頭來數(shù)學(xué)可能還考不好,這時(shí)候您可不能氣餒,也不必為花掉的時(shí)間惋惜。

    高中數(shù)學(xué)復(fù)習(xí)的五大要點(diǎn)分析一、端正態(tài)度,切忌浮躁,忌急于求成

    在第一輪復(fù)習(xí)的過程中,心浮氣躁是一個(gè)非常普遍的現(xiàn)象。主要表現(xiàn)為平時(shí)復(fù)習(xí)覺得沒有問題,題目也能做,但是到了考試時(shí)就是拿不了高分!這主要是因?yàn)椋?/p>

    (1)對(duì)復(fù)習(xí)的知識(shí)點(diǎn)缺乏系統(tǒng)的理解,解題時(shí)缺乏思維層次結(jié)構(gòu)。第一輪復(fù)習(xí)著重對(duì)基礎(chǔ)知識(shí)點(diǎn)的挖掘,數(shù)學(xué)老師一定都會(huì)反復(fù)強(qiáng)調(diào)基礎(chǔ)的重要性。如果不重視對(duì)知識(shí)點(diǎn)的系統(tǒng)化分析,不能構(gòu)成一個(gè)整體的知識(shí)網(wǎng)絡(luò)構(gòu)架,自然在解題時(shí)就不能擁有整體的構(gòu)思,也不能深入理解高考典型例題的思維方法。

    (2)復(fù)習(xí)的時(shí)候心不靜。心不靜就會(huì)導(dǎo)致思維不清晰,而思維不清晰就會(huì)促使復(fù)習(xí)沒有效率。建議大家在開始一個(gè)學(xué)科的復(fù)習(xí)之前,先靜下心來認(rèn)真想一想接下來需要復(fù)習(xí)哪一塊兒,需要做多少事情,然后認(rèn)真去做,同時(shí)需要很高的注意力,只有這樣才會(huì)有很好的效果。

    (3)在第一輪復(fù)習(xí)階段,學(xué)習(xí)的重心應(yīng)該轉(zhuǎn)移到基礎(chǔ)復(fù)習(xí)上來。

    因此,建議廣大同學(xué)在一輪復(fù)習(xí)的時(shí)候千萬不要急于求成,一定要靜下心來,認(rèn)真的揣摩每個(gè)知識(shí)點(diǎn),弄清每一個(gè)原理。只有這樣,一輪復(fù)習(xí)才能顯出成效。

    二、注重教材、注重基礎(chǔ),忌盲目做題

    要把書本中的常規(guī)題型做好,所謂做好就是要用最少的時(shí)間把題目做對(duì)。部分同學(xué)在第一輪復(fù)習(xí)時(shí)對(duì)基礎(chǔ)題不予以足夠的重視,認(rèn)為題目看上去會(huì)做就可以不加訓(xùn)練,結(jié)果常在一些“不該錯(cuò)的地方錯(cuò)了”,最終把原因簡(jiǎn)單的歸結(jié)為粗心,從而忽視了對(duì)基本概念的掌握,對(duì)基本結(jié)論和公式的記憶及基本計(jì)算的訓(xùn)練和常規(guī)方法的積累,造成了實(shí)際成績(jī)與心理感覺的偏差。

    可見,數(shù)學(xué)的基本概念、定義、公式,數(shù)學(xué)知識(shí)點(diǎn)的聯(lián)系,基本的數(shù)學(xué)解題思路與方法,是第一輪復(fù)習(xí)的重中之重。不妨以既是重點(diǎn)也是難點(diǎn)的函數(shù)部分為例,就必須掌握函數(shù)的概念,建立函數(shù)關(guān)系式,掌握定義域、值域與最值、奇偶性、單調(diào)性、周期性、對(duì)稱性等性質(zhì),學(xué)會(huì)利用圖像即數(shù)形結(jié)合。

    三、抓薄弱環(huán)節(jié),做好復(fù)習(xí)的針對(duì)性,忌無計(jì)劃

    每個(gè)同學(xué)在數(shù)學(xué)學(xué)習(xí)上遇到的問題有共同點(diǎn),更有不同點(diǎn)。在復(fù)習(xí)課上,老師只能針對(duì)性去解決共同點(diǎn),而同學(xué)們自己的個(gè)別問題則需要通過自己的思考,與同學(xué)們的討論,并向老師提問來解決問題,我們提倡同學(xué)多問老師,要敢于問。每個(gè)同學(xué)必須了解自己掌握了什么,還有哪些問題沒有解決,要明確只有把漏洞一一補(bǔ)上才能提高。復(fù)習(xí)的過程,實(shí)質(zhì)就是解決問題的過程,問題解決了,復(fù)習(xí)的效果就實(shí)現(xiàn)了。同時(shí),也請(qǐng)同學(xué)們注意:在你問問題之前先經(jīng)過自己思考,不要把不經(jīng)過思考的問題就直接去問,因?yàn)檫@并不能起到更大作用。

    高三的復(fù)習(xí)一定是有計(jì)劃、有目標(biāo)的,所以千萬不要盲目做題。第一輪復(fù)習(xí)非常具有針對(duì)性,對(duì)于所有知識(shí)點(diǎn)的地毯式轟炸,一定要做到不缺不漏。因此,僅靠簡(jiǎn)單做題是達(dá)不到一輪復(fù)習(xí)應(yīng)該具有的效果。而且盲目做題沒有針對(duì)性,更不會(huì)有全面性。在概念模糊的情況下一定要回歸課本,注意教材上最清晰的概念與原理,注重對(duì)知識(shí)點(diǎn)運(yùn)用方法的總結(jié)。

    四、在平時(shí)做題中要養(yǎng)成良好的解題習(xí)慣,忌不思

    1.樹立信心,養(yǎng)成良好的運(yùn)算習(xí)慣。

    部分同學(xué)平時(shí)學(xué)習(xí)過程中自信心不足,做作業(yè)時(shí)免不了互相對(duì)答案,也不認(rèn)真找出錯(cuò)誤原因并加以改正。“會(huì)而不對(duì)”是高三數(shù)學(xué)學(xué)習(xí)的大忌,常見的有審題失誤、計(jì)算錯(cuò)誤等,平時(shí)都以為是粗心,其實(shí)這就是一種非常不好的習(xí)慣,必須在第一輪復(fù)習(xí)中逐步克服,否則,后患無窮。可結(jié)合平時(shí)解題中存在的具體問題,逐題找出原因,看其是行為習(xí)慣方面的原因,還是知識(shí)方面的缺陷,再有針對(duì)性加以解決。必要時(shí)作些記錄,也就是錯(cuò)題本,每位同學(xué)必備的,以便以后查詢。

    2.做好解題后的開拓引申,培養(yǎng)一題多解和舉一反三的能力。

    解題能力的培養(yǎng)可以從一題多解和舉一反三中得到提高,因而解完題后,需要再回味和引申,它包括對(duì)解題方法的開拓引申,即一道數(shù)學(xué)題從不同的角度去考慮去分析,可以有不同的思路,不同的解法。

    考慮的愈廣泛愈深刻,獲得的思路愈廣闊,解法愈多樣;及對(duì)題目做開拓引申,引申出新題和新解法,有利于培養(yǎng)同學(xué)們的發(fā)散思維,激發(fā)創(chuàng)造精神,提高解題能力:

    (1)把題目條件開拓引申。

    ①把特殊條件一般化;②把一般條件特殊化;③把特殊條件和一般條件交替變化。

    (2)把題目結(jié)論開拓引申。

    (3)把題型開拓引申,同一個(gè)題目,給出不同的提法,可以變成不同的題型。俗稱為“一題多變”但其解法仍類似,按其解法而言,這些題又可稱為“多題一解”或“一法多用”。

    3.提高解題速度,掌握解題技巧。

    提高解題速度的主要因素有二:一是解題方法的巧妙與簡(jiǎn)捷;二是對(duì)常規(guī)解法的掌握是否達(dá)到高度的熟練程度。

    五、學(xué)會(huì)總結(jié)、歸納,訓(xùn)練到位,忌題量不足

    我在暑期上課的時(shí)候發(fā)現(xiàn),很多同學(xué)都是一看到題目就開始做題,這也是一輪復(fù)習(xí)應(yīng)該避免的地方。做題如果不注重思路的分析,知識(shí)點(diǎn)的運(yùn)用,效果可想而知。因此建議同學(xué)們?cè)谧鲱}前要把老師上課時(shí)復(fù)習(xí)的知識(shí)再回顧一下,梳理知識(shí)體系,回顧各個(gè)知識(shí)點(diǎn),對(duì)所學(xué)的知識(shí)結(jié)構(gòu)要有一個(gè)完整清楚的認(rèn)識(shí),認(rèn)真分析題目考查的知識(shí),思想,以及方法,還要學(xué)會(huì)總結(jié)歸納不留下任何知識(shí)的盲點(diǎn),在一輪復(fù)習(xí)中要注意對(duì)各個(gè)知識(shí)點(diǎn)的細(xì)化。這個(gè)過程不需要很長(zhǎng)的時(shí)間,而且到了后續(xù)階段會(huì)越來越熟練。因此,養(yǎng)成良好的做題習(xí)慣,有助于訓(xùn)練自己的解題思維,提高自己的解題能力。

    實(shí)踐出真知,充足的題量是把理論轉(zhuǎn)化為能力的一種保障,在足夠的題目的練習(xí)下不僅可以更扎實(shí)的掌握知識(shí)點(diǎn),還可以更深入的了解知識(shí)點(diǎn),避免出現(xiàn)“會(huì)而不對(duì)、對(duì)而不全”的現(xiàn)象。由于高考依然是以做題為主,所以解題能力是高考分?jǐn)?shù)的一個(gè)直接反映,尤其是數(shù)學(xué)試題。而解題能力不是三兩道題就能提升的,而是要大量的反復(fù)的訓(xùn)練、認(rèn)真細(xì)致的推敲才會(huì)有較大的提升。有句話說的好,“量變導(dǎo)致質(zhì)變”,因此,同學(xué)們?cè)诿空聫?fù)習(xí)的時(shí)候,一定要做足夠的題,才能夠充分的理解這一章的內(nèi)容,才能夠做到對(duì)這一章知識(shí)點(diǎn)的熟練運(yùn)用。

    第7篇

    無論掌握哪一種知識(shí),對(duì)智力都是有用的,它會(huì)把無用的東西拋開而把好的東西保留住。下面小編給大家分享一些高中必修二數(shù)學(xué)知識(shí),希望能夠幫助大家,歡迎閱讀!

    高中必修二數(shù)學(xué)知識(shí)1不等關(guān)系

    了解現(xiàn)實(shí)世界和日常生活中的不等關(guān)系,了解不等式(組)的實(shí)際背景.

    (2)一元二次不等式

    ①會(huì)從實(shí)際情境中抽象出一元二次不等式模型.

    ②通過函數(shù)圖象了解一元二次不等式與相應(yīng)的二次函數(shù)、一元二次方程的聯(lián)系.

    ③會(huì)解一元二次不等式,對(duì)給定的一元二次不等式,會(huì)設(shè)計(jì)求解的程序框圖.

    (3)二元一次不等式組與簡(jiǎn)單線性規(guī)劃問題

    ①會(huì)從實(shí)際情境中抽象出二元一次不等式組.

    ②了解二元一次不等式的幾何意義,能用平面區(qū)域表示二元一次不等式組.

    ③會(huì)從實(shí)際情境中抽象出一些簡(jiǎn)單的二元線性規(guī)劃問題,并能加以解決.

    (4)基本不等式:

    ①了解基本不等式的證明過程.

    ②會(huì)用基本不等式解決簡(jiǎn)單的最大(小)值問題圓的輔助線一般為連圓心與切線或者連圓心與弦中點(diǎn).

    數(shù)列

    (1)數(shù)列的概念和簡(jiǎn)單表示法

    ①了解數(shù)列的概念和幾種簡(jiǎn)單的表示方法(列表、圖象、通項(xiàng)公式).

    ②了解數(shù)列是自變量為正整數(shù)的一類函數(shù).

    (2)等差數(shù)列、等比數(shù)列

    ①理解等差數(shù)列、等比數(shù)列的概念.

    ②掌握等差數(shù)列、等比數(shù)列的通項(xiàng)公式與前項(xiàng)和公式.

    ③能在具體的問題情境中,識(shí)別數(shù)列的等差關(guān)系或等比關(guān)系,并能用有關(guān)知識(shí)解決相應(yīng)的問題.

    ④了解等差數(shù)列與一次函數(shù)、等比數(shù)列與指數(shù)函數(shù)的關(guān)系.

    高中數(shù)學(xué)必修二知識(shí)點(diǎn)總結(jié):不等式

    高中必修二數(shù)學(xué)知識(shí)2空間直線與直線之間的位置關(guān)系

    ①異面直線定義:不同在任何一個(gè)平面內(nèi)的兩條直線

    ②異面直線性質(zhì):既不平行,又不相交.

    ③異面直線判定:過平面外一點(diǎn)與平面內(nèi)一點(diǎn)的直線與平面內(nèi)不過該店的直線是異面直線

    ④異面直線所成角:作平行,令兩線相交,所得銳角或直角,即所成角.兩條異面直線所成角的范圍是(0°,90°],若兩條異面直線所成的角是直角,我們就說這兩條異面直線互相垂直.

    求異面直線所成角步驟:

    A、利用定義構(gòu)造角,可固定一條,平移另一條,或兩條同時(shí)平移到某個(gè)特殊的位置,頂點(diǎn)選在特殊的位置上.B、證明作出的角即為所求角C、利用三角形來求角

    (7)等角定理:如果一個(gè)角的兩邊和另一個(gè)角的兩邊分別平行,那么這兩角相等或互補(bǔ).

    (8)空間直線與平面之間的位置關(guān)系

    直線在平面內(nèi)——有無數(shù)個(gè)公共點(diǎn).

    三種位置關(guān)系的符號(hào)表示:aαa∩α=Aaα

    (9)平面與平面之間的位置關(guān)系:平行——沒有公共點(diǎn);αβ

    相交——有一條公共直線.α∩β=b

    2、空間中的平行問題

    (1)直線與平面平行的判定及其性質(zhì)

    線面平行的判定定理:平面外一條直線與此平面內(nèi)一條直線平行,則該直線與此平面平行.

    線線平行線面平行

    線面平行的性質(zhì)定理:如果一條直線和一個(gè)平面平行,經(jīng)過這條直線的平面和這個(gè)平面相交,

    那么這條直線和交線平行.線面平行線線平行

    (2)平面與平面平行的判定及其性質(zhì)

    兩個(gè)平面平行的判定定理

    (1)如果一個(gè)平面內(nèi)的兩條相交直線都平行于另一個(gè)平面,那么這兩個(gè)平面平行

    (線面平行面面平行),

    (2)如果在兩個(gè)平面內(nèi),各有兩組相交直線對(duì)應(yīng)平行,那么這兩個(gè)平面平行.

    (線線平行面面平行),

    (3)垂直于同一條直線的兩個(gè)平面平行,

    兩個(gè)平面平行的性質(zhì)定理

    (1)如果兩個(gè)平面平行,那么某一個(gè)平面內(nèi)的直線與另一個(gè)平面平行.(面面平行線面平行)

    (2)如果兩個(gè)平行平面都和第三個(gè)平面相交,那么它們的交線平行.(面面平行線線平行)

    3、空間中的垂直問題

    (1)線線、面面、線面垂直的定義

    ①兩條異面直線的垂直:如果兩條異面直線所成的角是直角,就說這兩條異面直線互相垂直.

    ②線面垂直:如果一條直線和一個(gè)平面內(nèi)的任何一條直線垂直,就說這條直線和這個(gè)平面垂直.

    ③平面和平面垂直:如果兩個(gè)平面相交,所成的二面角(從一條直線出發(fā)的兩個(gè)半平面所組成的圖形)是直二面角(平面角是直角),就說這兩個(gè)平面垂直.

    (2)垂直關(guān)系的判定和性質(zhì)定理

    ①線面垂直判定定理和性質(zhì)定理

    判定定理:如果一條直線和一個(gè)平面內(nèi)的兩條相交直線都垂直,那么這條直線垂直這個(gè)平面.

    性質(zhì)定理:如果兩條直線同垂直于一個(gè)平面,那么這兩條直線平行.

    ②面面垂直的判定定理和性質(zhì)定理

    判定定理:如果一個(gè)平面經(jīng)過另一個(gè)平面的一條垂線,那么這兩個(gè)平面互相垂直.

    性質(zhì)定理:如果兩個(gè)平面互相垂直,那么在一個(gè)平面內(nèi)垂直于他們的交線的直線垂直于另一個(gè)平面.

    4、空間角問題

    (1)直線與直線所成的角

    ①兩平行直線所成的角:規(guī)定為.

    ②兩條相交直線所成的角:兩條直線相交其中不大于直角的角,叫這兩條直線所成的角.

    ③兩條異面直線所成的角:過空間任意一點(diǎn)O,分別作與兩條異面直線a,b平行的直線,形成兩條相交直線,這兩條相交直線所成的不大于直角的角叫做兩條異面直線所成的角.

    (2)直線和平面所成的角

    ①平面的平行線與平面所成的角:規(guī)定為.②平面的垂線與平面所成的角:規(guī)定為.

    ③平面的斜線與平面所成的角:平面的一條斜線和它在平面內(nèi)的射影所成的銳角,叫做這條直線和這個(gè)平面所成的角.

    求斜線與平面所成角的思路類似于求異面直線所成角:“一作,二證,三計(jì)算”.

    在“作角”時(shí)依定義關(guān)鍵作射影,由射影定義知關(guān)鍵在于斜線上一點(diǎn)到面的垂線,

    在解題時(shí),注意挖掘題設(shè)中兩個(gè)主要信息:(1)斜線上一點(diǎn)到面的垂線;(2)過斜線上的一點(diǎn)或過斜線的平面與已知面垂直,由面面垂直性質(zhì)易得垂線.

    (3)二面角和二面角的平面角

    ①二面角的定義:從一條直線出發(fā)的兩個(gè)半平面所組成的圖形叫做二面角,這條直線叫做二面角的棱,這兩個(gè)半平面叫做二面角的面.

    ②二面角的平面角:以二面角的棱上任意一點(diǎn)為頂點(diǎn),在兩個(gè)面內(nèi)分別作垂直于棱的兩條射線,這兩條射線所成的角叫二面角的平面角.

    ③直二面角:平面角是直角的二面角叫直二面角.

    兩相交平面如果所組成的二面角是直二面角,那么這兩個(gè)平面垂直;反過來,如果兩個(gè)平面垂直,那么所成的二面角為直二面角

    ④求二面角的方法

    定義法:在棱上選擇有關(guān)點(diǎn),過這個(gè)點(diǎn)分別在兩個(gè)面內(nèi)作垂直于棱的射線得到平面角

    垂面法:已知二面角內(nèi)一點(diǎn)到兩個(gè)面的垂線時(shí),過兩垂線作平面與兩個(gè)面的交線所成的角為二面角的平面角

    高中必修二數(shù)學(xué)知識(shí)3圓的方程

    1、圓的定義:平面內(nèi)到一定點(diǎn)的距離等于定長(zhǎng)的點(diǎn)的集合叫圓,定點(diǎn)為圓心,定長(zhǎng)為圓的半徑.

    2、圓的方程

    (1)標(biāo)準(zhǔn)方程,圓心,半徑為r;

    (2)一般方程

    當(dāng)時(shí),方程表示圓,此時(shí)圓心為,半徑為

    當(dāng)時(shí),表示一個(gè)點(diǎn);當(dāng)時(shí),方程不表示任何圖形.

    (3)求圓方程的方法:

    一般都采用待定系數(shù)法:先設(shè)后求.確定一個(gè)圓需要三個(gè)獨(dú)立條件,若利用圓的標(biāo)準(zhǔn)方程,

    需求出a,b,r;若利用一般方程,需要求出D,E,F;

    另外要注意多利用圓的幾何性質(zhì):如弦的中垂線必經(jīng)過原點(diǎn),以此來確定圓心的位置.

    3、高中數(shù)學(xué)必修二知識(shí)點(diǎn)總結(jié):直線與圓的位置關(guān)系:

    直線與圓的位置關(guān)系有相離,相切,相交三種情況:

    (1)設(shè)直線,圓,圓心到l的距離為,則有;;

    (2)過圓外一點(diǎn)的切線:①k不存在,驗(yàn)證是否成立②k存在,設(shè)點(diǎn)斜式方程,用圓心到該直線距離=半徑,求解k,得到方程【一定兩解】

    (3)過圓上一點(diǎn)的切線方程:圓(x-a)2+(y-b)2=r2,圓上一點(diǎn)為(x0,y0),則過此點(diǎn)的切線方程為(x0-a)(x-a)+(y0-b)(y-b)=r2

    4、圓與圓的位置關(guān)系:通過兩圓半徑的和(差),與圓心距(d)之間的大小比較來確定.

    設(shè)圓,

    兩圓的位置關(guān)系常通過兩圓半徑的和(差),與圓心距(d)之間的大小比較來確定.

    當(dāng)時(shí)兩圓外離,此時(shí)有公切線四條;

    當(dāng)時(shí)兩圓外切,連心線過切點(diǎn),有外公切線兩條,內(nèi)公切線一條;

    當(dāng)時(shí)兩圓相交,連心線垂直平分公共弦,有兩條外公切線;

    當(dāng)時(shí),兩圓內(nèi)切,連心線經(jīng)過切點(diǎn),只有一條公切線;

    當(dāng)時(shí),兩圓內(nèi)含;當(dāng)時(shí),為同心圓.

    注意:已知圓上兩點(diǎn),圓心必在中垂線上;已知兩圓相切,兩圓心與切點(diǎn)共線

    5、空間點(diǎn)、直線、平面的位置關(guān)系

    公理1:如果一條直線的兩點(diǎn)在一個(gè)平面內(nèi),那么這條直線是所有的點(diǎn)都在這個(gè)平面內(nèi).

    應(yīng)用:判斷直線是否在平面內(nèi)

    用符號(hào)語言表示公理1:

    公理2:如果兩個(gè)不重合的平面有一個(gè)公共點(diǎn),那么它們有且只有一條過該點(diǎn)的公共直線

    符號(hào):平面α和β相交,交線是a,記作α∩β=a.

    符號(hào)語言:

    公理2的作用:

    ①它是判定兩個(gè)平面相交的方法.

    ②它說明兩個(gè)平面的交線與兩個(gè)平面公共點(diǎn)之間的關(guān)系:交線必過公共點(diǎn).

    ③它可以判斷點(diǎn)在直線上,即證若干個(gè)點(diǎn)共線的重要依據(jù).

    公理3:經(jīng)過不在同一條直線上的三點(diǎn),有且只有一個(gè)平面.

    推論:一直線和直線外一點(diǎn)確定一平面;兩相交直線確定一平面;兩平行直線確定一平面.

    公理3及其推論作用:①它是空間內(nèi)確定平面的依據(jù)②它是證明平面重合的依據(jù)

    公理4:平行于同一條直線的兩條直線互相平行

    高中必修二數(shù)學(xué)知識(shí)4直線與方程

    (1)直線的傾斜角

    定義:x軸正向與直線向上方向之間所成的角叫直線的傾斜角.特別地,當(dāng)直線與x軸平行或重合時(shí),我們規(guī)定它的傾斜角為0度.因此,傾斜角的取值范圍是0°≤α

    (2)直線的斜率

    ①定義:傾斜角不是90°的直線,它的傾斜角的正切叫做這條直線的斜率.直線的斜率常用k表示.即.斜率反映直線與軸的傾斜程度.

    當(dāng)時(shí),;當(dāng)時(shí),;當(dāng)時(shí),不存在.

    ②過兩點(diǎn)的直線的斜率公式:

    注意下面四點(diǎn):(1)當(dāng)時(shí),公式右邊無意義,直線的斜率不存在,傾斜角為90°;

    (2)k與P1、P2的順序無關(guān);(3)以后求斜率可不通過傾斜角而由直線上兩點(diǎn)的坐標(biāo)直接求得;

    (4)求直線的傾斜角可由直線上兩點(diǎn)的坐標(biāo)先求斜率得到.

    (3)直線方程

    ①點(diǎn)斜式:直線斜率k,且過點(diǎn)

    注意:當(dāng)直線的斜率為0°時(shí),k=0,直線的方程是y=y1.

    當(dāng)直線的斜率為90°時(shí),直線的斜率不存在,它的方程不能用點(diǎn)斜式表示.但因l上每一點(diǎn)的橫坐標(biāo)都等于x1,所以它的方程是x=x1.

    ②斜截式:,直線斜率為k,直線在y軸上的截距為b

    ③兩點(diǎn)式:()直線兩點(diǎn),

    ④截矩式:

    其中直線與軸交于點(diǎn),與軸交于點(diǎn),即與軸、軸的截距分別為.

    ⑤一般式:(A,B不全為0)

    注意:各式的適用范圍特殊的方程如:

    (4)平行于x軸的直線:(b為常數(shù));平行于y軸的直線:(a為常數(shù));

    (5)直線系方程:即具有某一共同性質(zhì)的直線

    (一)平行直線系

    平行于已知直線(是不全為0的常數(shù))的直線系:(C為常數(shù))

    (二)垂直直線系

    垂直于已知直線(是不全為0的常數(shù))的直線系:(C為常數(shù))

    (三)過定點(diǎn)的直線系

    (ⅰ)斜率為k的直線系:,直線過定點(diǎn);

    (ⅱ)過兩條直線,的交點(diǎn)的直線系方程為

    (為參數(shù)),其中直線不在直線系中.

    (6)兩直線平行與垂直

    注意:利用斜率判斷直線的平行與垂直時(shí),要注意斜率的存在與否.

    (7)兩條直線的交點(diǎn)

    相交

    交點(diǎn)坐標(biāo)即方程組的一組解.

    方程組無解;方程組有無數(shù)解與重合

    (8)兩點(diǎn)間距離公式:設(shè)是平面直角坐標(biāo)系中的兩個(gè)點(diǎn)

    (9)點(diǎn)到直線距離公式:一點(diǎn)到直線的距離

    (10)兩平行直線距離公式

    在任一直線上任取一點(diǎn),再轉(zhuǎn)化為點(diǎn)到直線的距離進(jìn)行求解.

    高中必修二數(shù)學(xué)知識(shí)51、柱、錐、臺(tái)、球的結(jié)構(gòu)特征

    (1)棱柱:

    幾何特征:兩底面是對(duì)應(yīng)邊平行的全等多邊形;側(cè)面、對(duì)角面都是平行四邊形;側(cè)棱平行且相等;平行于底面的截面是與底面全等的多邊形.

    (2)棱錐

    幾何特征:側(cè)面、對(duì)角面都是三角形;平行于底面的截面與底面相似,其相似比等于頂點(diǎn)到截面距離與高的比的平方.

    (3)棱臺(tái):

    幾何特征:①上下底面是相似的平行多邊形②側(cè)面是梯形③側(cè)棱交于原棱錐的頂點(diǎn)

    (4)圓柱:定義:以矩形的一邊所在的直線為軸旋轉(zhuǎn),其余三邊旋轉(zhuǎn)所成

    幾何特征:①底面是全等的圓;②母線與軸平行;③軸與底面圓的半徑垂直;④側(cè)面展開圖是一個(gè)矩形.

    (5)圓錐:定義:以直角三角形的一條直角邊為旋轉(zhuǎn)軸,旋轉(zhuǎn)一周所成

    幾何特征:①底面是一個(gè)圓;②母線交于圓錐的頂點(diǎn);③側(cè)面展開圖是一個(gè)扇形.

    (6)圓臺(tái):定義:以直角梯形的垂直與底邊的腰為旋轉(zhuǎn)軸,旋轉(zhuǎn)一周所成

    幾何特征:①上下底面是兩個(gè)圓;②側(cè)面母線交于原圓錐的頂點(diǎn);③側(cè)面展開圖是一個(gè)弓形.

    (7)球體:定義:以半圓的直徑所在直線為旋轉(zhuǎn)軸,半圓面旋轉(zhuǎn)一周形成的幾何體

    幾何特征:①球的截面是圓;②球面上任意一點(diǎn)到球心的距離等于半徑.

    2、空間幾何體的三視圖

    定義三視圖:正視圖(光線從幾何體的前面向后面正投影);側(cè)視圖(從左向右)、

    俯視圖(從上向下)

    注:正視圖反映了物體的高度和長(zhǎng)度;俯視圖反映了物體的長(zhǎng)度和寬度;側(cè)視圖反映了物體的高度和寬度.

    3、空間幾何體的直觀圖——斜二測(cè)畫法

    斜二測(cè)畫法特點(diǎn):①原來與x軸平行的線段仍然與x平行且長(zhǎng)度不變;

    ②原來與y軸平行的線段仍然與y平行,長(zhǎng)度為原來的一半.

    4、柱體、錐體、臺(tái)體的表面積與體積

    (1)幾何體的表面積為幾何體各個(gè)面的面積的和.

    亚洲app_AV俺去_谁有av网站在线观看_九九精品黄色
  • <nav id="zaw9e"></nav>